Закон и формулы прочности иск оптимальной структуры

Общий закон прочности ИСК оптимальной структуры устанавливает, что произведение прочности (в любых показателях) конгломерата оптимальной структуры на фазовое отношение его вяжущего вещества в некоторой степени есть величина постоянная: Rиск•(с/ф)n = const. Эта закономерность может быть выражена и в отношении некоторых других свойств, чувствительных к изменениям в структуре. И тогда закон устанавливает, что произведение числовых значений функциональных свойств искусственных строительных конгломератов оптимальной структуры на степенную функцию фазового отношения его вяжущего вещества является величиной постоянной. Как отмечалось ранее, под условным выражением «фазовое отношение» понимается величина отношения массы среды к массе твердой высокодисперсной фазы в свежеизготовленном материале. Под постоянной величиной в законе прочности (и других свойств) имеется в виду произведение R*•(с*/ф)n, что указывает, в частности, на динамичный характер закона, зависимый от качества вяжущего вещества и технологии, принятой на производстве.

В непосредственной связи с законом прочности находятся и формулы для определения прочности конгломерата оптимальной структуры. Они следуют из анализа соответствующих графических зависимостей, наиболее четко выраженных в пространственной системе координат (см. рис. 3.8). Из графика на плоскости x—y видно, что

Закон и формулы прочности иск оптимальной структуры

(3.3)

на плоскости y—zвидно, что

Закон и формулы прочности иск оптимальной структуры

(3.4)

а на плоскости x—z —

Закон и формулы прочности иск оптимальной структуры

(3.5)

В формулах: k1 — коэффициент пористости, определяемый как

Закон и формулы прочности иск оптимальной структуры

p0 — пористость сухой смеси вяжущего вещества, %; px — пористость вяжущего вещества оптимальной структуры, равная обычно 2—3 %; b — показатель степени, равный 0,85—1,15. Учитывая относительно большую величину p0 и малую px в экстремальной точке вяжущего вещества, значение k1 практически приближается к единице, и поэтому нередко в формулах прочности коэффициент опускается, а в расчетах не учитывается (в плотных ИСК); x — отношение фазовых отношений, т.е.

Закон и формулы прочности иск оптимальной структуры

Показано, что это отношение по величине адекватно отношению осредненных толщин (?, ? *) пленок среды соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры (в свежеизготовленных материалах). Действительно,

Закон и формулы прочности иск оптимальной структуры

где ? и ?* — объемы среды в вяжущем веществе соответственно конгломерата и при с*/ф; Sсум и S*сум — суммарные поверхности твердой фазы ф в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры при с*/ф; Sуд — удельная поверхность твердой фазы вяжущего вещества (понятно, что она остается одинаковой по всей кривой оптимальных структур ИСК); ? — средняя плотность среды в вяжущем веществе (понятно, что она не меняется по всей кривой оптимальных структур).

Следовательно, величинах показывает, во сколько раз фазовое отношение реального вяжущего вещества в конгломерате больше фазового отношения в вяжущем веществе оптимальной структуры (в точке M).Или, что то же, во сколько раз пленка среды (?) в конгломерате толще пленки среды (? *) в вяжущем веществе оптимальной структуры. При этом толщины пленок среды принимаются осредненными, так как их величины зависят от диаметра твердых частиц фазы, и поэтому не являются постоянными. Показатели степени n и m отражают нелинейность зависимостей прочности соответственно от фазового отношения вяжущего вещества и от количественного содержания вяжущего вещества в конгломерате, причем величина n—постоянная, а величина m колеблется от 0 до некоторого максимального значения; они определяются экспериментальным методом.

Апостериорное определение прочности ИСК оптимальной структуры возможно и еще по одной общей формуле, в которой соединено влияние отношения фазовых отношений и количества вяжущего вещества с+ф1, а следовательно, и количества (по массе, в процентах) заполнителя, поскольку П+Щ = 100 — (с+ф), %:

Закон и формулы прочности иск оптимальной структуры

(3.6)

Эта необходимая для практики формула получена из формул (3.3) и (3.4) путем переумножения входящих в них членов и последующего извлечения квадратного корня. В формуле (3.6) отражено влияние качества заполнителей, использованных в ИСК, посредством показателей степени n (чем меньше показатель степени n, тем выше качество и плотность заполнителя) и m — показателя, зависящего от количества этого же компонента в смеси (чем больше заполнителя, тем большее значение и показателя m). Формулы тесно связаны между собой посредством равенства:

Закон и формулы прочности иск оптимальной структуры

получаемого на плоскости x—z в пространственной системе координат (см. рис. 3.8).

Для пористых конгломератов (с пористостью выше 2—3%) используют газо- и пенообразующие добавки с целью поризации вяжущего вещества, а также пористые заполнители. В результате прочность ИСК снижается, но формулы для ‘ее подсчета сохраняются прежними, так как сохраняются все требуемые признаки оптимальных структур. Важно только сохранить условие, чтобы реальное с/ф не было меньше расчетного с*/ф, ибо в этом случае структура перестает быть оптимальной, а пленки среды — континуальными (непрерывными).

По физической сущности закон и формулы прочности ИСК отражают максимальные значения сил сцепления микро- и макрочастиц при минимальных расстояниях между ними вследствие минимальных толщин континуальных пленок среды. Они отражают также минимальную дефектность и наибольшую однородность.

С учетом зависимостей Гриффитса общая формула прочности конгломерата оптимальной структуры может быть выражена:

Закон и формулы прочности иск оптимальной структуры

(3.7)

где lk — суммарная величина дефектов, способствующих концентрации напряжений, появлению, росту и ускорению роста микро- и макротрещин до критических размеров, что быстро снижает прочность по мере удаления параметров структуры от оптимальных; k2 — поправочный коэффициент перехода от хрупкого к вязкому разрушению; G — удельная свободная поверхностная энергия; E — модуль упругости; (?/ ?*)n — отношение толщин пленок среды соответственно в вяжущем веществе ИСК и в вяжущем веществе оптимальной структуры, т. е. при с*/ф, а показатель степени n зависит от характера и плотности упаковки микрочастиц вяжущего вещества; (r/r0) — отношение межатомных (межмолекулярных) расстояний в микроструктуре вяжущего вещества соответственно в момент разрушения и момент равенства сил притяжения и отталкивания, т. е. когда равнодействующая их равна нулю (рис. 3.6 и 3.9). Из формулы (3.7) следует, что в ее знаменатель входят разупрочняющие, а в числитель — упрочняющие факторы. Управление этими факторами составляет основу повышения прочности ИСК.

По формулам прочности ИСК оптимальной структуры определяют статическую и усталостную прочность. Для увеличения Rиск необходимо повысить прочность вяжущего — матричного вещества, увеличить плотность упаковки макрочастиц, снизить до оптимальных пределов толщину пленок среды в свежеизготовленном конгломерате, уменьшить до минимума содержание вяжущего вещества при непременном сохранении континуальной пространственной сетки среды. Необходимо также технологическими мерами добиваться минимума дефектов, наибольшей компактности микрочастиц. В некоторых пределах возможно поднять еще модуль упругости, т. е. жесткость материала. При направленном управлении прочностью ИСК следует стремиться к повышению членов формулы в числителе и к снижению — в знаменателе.

Тайны сознания (Пробуждение Мужчин)


Понравилась статья? Поделиться с друзьями: